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Abstract

In Canada, COVID-19 pandemic triggered exceptional monetary policy interven-
tions by the central bank, which in March 2020 made multiple unscheduled cuts to its
target rate. The aim of this paper is to assess the extent to which Bank of Canada inter-
ventions affected the determinants of the yield curve. By applying Functional Principal
Component Analysis to the term structure of interest rates we find that, during the
pandemic, the long-run dependence of level and slope components of the yield curve is
unchanged with respect to previous months, although the shape of the mean yield curve
completely changed after target rate cuts. Bank of Canada was effective in lowering the
whole yield curve and correcting the inverted hump of previous months, but it was not
able to reduce the exposure to already existing long-run risks.
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1 Introduction and motivation

On1 March 11, 2020, the director of the World Health Organization, Dr. T.A. Ghebreyesus,

declared: “We have therefore made the assessment that COVID-19 can be characterized as a
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pandemic. [...] All countries must strike a fine balance between protecting health, minimizing

economic and social disruption, and respecting human rights.” (WHO Director-General’s

opening remarks at the media briefing on COVID-19, March 11, 2020).

This address officially marked the start of a health crisis that was already wreaking

havoc on the global economy and financial markets. At the social level, on September 28,

2020 the world reached the terrible milestone of one million deaths due to COVID-19, and

this death toll keeps growing (3.45 millions as of May 23, 2021; data from WHO COVID-19

Weekly Epidemiological Update of May 25, 2021). At the economic level, global economy

saw an unprecedented collapse due to the pandemic. The Canadian gross domestic product

fell by 7.1% and 11.4% during the periods from February to March 2020 and from March to

April 2020, respectively (Statistics Canada, Table 36-10-0434-01). No sector of the economy

has been spared from the crisis. The COVID-19 outbreak rapidly increased financial market

volatility and augmented investors’ fear. As to the Canadian bond market, these phenomena

induced a widening of credit spreads, a liquidity shrinkage and a fall of bond funds value

(Ouellet Leblanc and Shotlander, 2020).

In response to these events, the Bank of Canada announced several measures to reduce

panic and calm down the markets. The intervention with the most powerful impact on

bond yields was the huge cut of the overnight rate target (the target rate) from 1.75% to

0.25% in March 2020. This interest rate, which is employed by depository institutions in

the overnight market, is the lowest possible interest rate and it has an extremely short-

term nature. The central bank introduced several other measures to reduce the financial

distress and promote the resilience of the Canadian economy, such as the Contingent Term

Repo Facility, the Commercial Paper Purchase Program and the Corporate Bond Purchase

Program, among the others.2

The yield curve (or term structure of interest rates) represents government bonds yields

as a function of their time to maturity (or term). It is apparent that the monetary policy

intervention of the Bank of Canada affects short-term yields. However, the impact on long-

term yields is not straightforward. On the one hand, the mechanic compounding of interest

rates makes the change in the target rate propagating across time horizons. On the other

hand, the economic literature acknowledges that the long-term side of the term structure

is generally mainly associated with expectations and anticipation of market participants

about future macroeconomic scenarios. Detailed discussions of the expectation theory and

its alternatives can be retrieved in Russell (1992) and in the introductions of Cox, Ingersoll,

and Ross (1985) and Severino (2021).

Our goal is to assess the extent to which the Bank of Canada interventions affected

2Details on the Bank of Canada website at links: Contingent Term Repo Facility, Commercial Paper
Purchase Program and Corporate Bond Purchase Program.
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the determinants of the term structure of bond yields during the first wave of COVID-19

pandemic. We tackle the issue of studying the behavior of the yield curve across different

time periods, using a data set of Canadian government bond yields ranging from May 1,

2018 to October 30, 2020, and we analyze these data employing a non-parametric approach

within the framework of Functional Data Analysis. This allows us to quantify the evolution

of the main factors of the yield curve over time, and to relate the changes in such factors

to both market uncertainty and monetary policy interventions. Functional Data Analysis

represents a very fruitful statistical tool to study the term structure of yields, since it permits

to treat these data as curves and to fully exploit the shape information they comprise. In

the realm of time series, some applications of FDA techniques are provided by Cai, Fan,

and Yao (2000) and Ramsay and Ramsey (2002). On a larger perspective, an application

of FDA to COVID-19 epidemic data can be found in Boschi et al. (2020).

In this paper, we provide a comparative study on three sub-periods of the data set (the

latter including COVID-19 outbreak). We employ depth-based functional boxplots to vi-

sualize the curve distribution in each period, and apply Functional Principal Component

Analysis (Ramsay and Silverman, 2005, Chapters 8 and 9) to each sample of yield curves in

order to elicit the components explaining the most variability in each period. This FPCA

of yield curves extends to the functional setting the more common application of the clas-

sic (non-functional) Principal Component Analysis to yields (Litterman and Scheinkman,

1991), which aims at decomposing the yields at different horizons into three factors: level,

slope and curvature. Similarly to Litterman and Scheinkman (1991), we find three compo-

nents reflecting the modes of variation of yields in the short-, medium- or long-term, that

are not directly observable in the average or standard deviation yield curves. An important

advantage of using FPCA instead of PCA is that the time dependence and the ordering of

terms in the yield curve are implicitly taken into account in the functional analysis, while

PCA treats the variables independently of their order. In addition, the interpretation of the

functional components is neater, due to the smoothness of the component eigenfunctions,

as well as of the means and the covariance functions. An example of application of FPCA

to financial data (in particular, to volatility) is represented by Müller, Sen, and Stadtmüller

(2011).

The FDA analysis is complemented by the estimation of Nelson and Siegel (1987) ex-

ponential regression model for the yield curve in each day – which allows us to describe the

three factors from a different angle. In particular, the curvature effect, which has a tiny

weight in the FPCA variance decomposition, is better appreciated in this model.

Our analyses show that Bank of Canada target rate cuts of March 2020 induced a

decline in the entire term structure of yields and imposed a positive monotony to the yield
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curve (that was absent in the previous twelve months). Nonetheless, the FPCA reveals the

non-negligible presence, during the pandemic, of the same long-run risks detected in the

previous months. Central bank interventions had little impact on them. All conclusions are

summarized in Section 6.

The paper is organized as follows. After describing the financial perspectives in Section

2, we illustrate the sample, its subdivision in periods and the related descriptive statistics in

Section 3. In Section 4 we apply FPCA to the three sample periods. Section 5 completes the

analysis by fitting Nelson and Siegel (1987) model. The main findings are, then, elaborated

in Section 6. The Appendix contains further analyses and figures.

2 Financial perspectives and literature

The identification of the determinants of the yield curve and the forecast of their evolution

constitute important challenges in financial economics. The yield curve reflects the health

of the economic system and, when it is downward sloping, it is considered a preliminary

signal for a financial crisis (Ang, Piazzesi, and Wei, 2006).

Several studies aim at understanding the main factors of the yield curve. In their seminal

work, Litterman and Scheinkman (1991) use PCA to reduce the dimensionality of yields and

identify three uncorrelated factors (namely, level, slope and curvature) that explain more

than 98% of US Treasury bonds yields variance (see also Jamshidian and Zhu, 1996). The

level represents a downward or upward change in interest rates characterized by a parallel

shift in the yield curve. The slope (or steepness) reflects a twist caused by long-term rates

being higher than short-term rates, or vice versa. Finally, a shock in the curvature generates

an increase of both short- and long-term rates, and a simultaneous fall of intermediate rates,

or vice versa (a butterfly). Importantly, the uncorrelation between the three components

is crucial for the design of factor neutrality models to immunize portfolios from movements

in such factors. See, e.g., Barber and Copper (1996), Falkenstein and Hanweck (1997) and

Golub and Tilman (1997). The applications to Asset Liability Management by insurance

companies and pension plans to hedge interest rate risks are countless. See, for instance,

Chapter 7 in Veronesi (2016) and the comprehensive exposition in Luckner et al. (2003).

Other uses of PCA in the yield curve modeling can be found in Novosyolov and Satchkov

(2008) and in Barber and Copper (2012) and a recent application to European sovereign

bonds is provided by O’Sullivan and Papavassiliou (2020).

In the literature, numerous three-factor models for the yield curve, alternative to the

PCA approach, have been proposed (see, e.g. Balduzzi et al., 1996; Dai and Singleton,

2000). Recently, Ortu, Severino, Tamoni, and Tebaldi (2020) use persistence-based factors

to model the term structure of interest rates and improve the predictability of bond returns.

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3762628

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Another branch of this literature focuses more on the identification of observable factors

for the yield curve modeling (see, e.g., Evans and Marshall, 2007; Ang and Piazzesi, 2003;

Bikbov and Chernov, 2010). In a nutshell, some macroeconomic variables (inflation, real

activity...) largely contribute to explain movements in the yield curve at short, medium or

long maturities.

Our paper aims at understanding the evolution of the factors of the yield curve in

the COVID-19 period, in order to clarify the effects of the pandemic (and the consequent

expansionary monetary policies) on bond markets. The loss of trust in the financial system

rapidly led to massive corporate bond sales. As Kargar et al. (2020) illustrate, the severe

illiquidity in US corporate bond markets in March 2020 was mitigated only by several

Federal Reserve interventions (the liquidity crisis microstructure is described by O’Hara and

Zhou, 2021). Similar dynamics have been recognized in investment funds in corporate bond

markets by Falato, Goldstein, and Hortaçsu (2020). Only Federal Reserve announcements

were able to calm down the disruption in the debt market (Haddad, Moreira, and Muir,

2021). The illiquidity of US Treasury bonds during COVID-19 outbreak has also been

analyzed by He, Nagel, and Song (2021) in a dynamic equilibrium framework. Specifically,

our paper focuses on the changes in the three main determinants of the yield curve (level,

slope and curvature) in the Canadian government bond market.

3 Sample subdivision and descriptive analysis

We consider a daily sample of yields from May 1, 2018 to October 30, 2020. The data set can

be freely downloaded from the Bank of Canada website at https://www.bankofcanada.

ca/rates/interest-rates/bond-yield-curves/. For each day, the data set contains the

yields to maturity of zero-coupon bonds with term ranging from 3 months to 30 years,

on a quarter basis (120 maturities in total). That is, the data set consists of daily yield

curves generated from pricing data of Canadian government bonds and treasury bills. A

description of the methodology used to derive the yield curves is provided in Bolder, Metzler,

and Johnson (2004).

3.1 Sample subdivision

Since we aim at quantifying the effects of the COVID-19 outbreak on the term structure of

rates, we partition our data set into three sub-samples, based on the occurrence of important

financial events. It should be observed that the target rate is 1.25 % on May 1, 2018, when

our sample begins, and is later modified several times by the Bank of Canada (see Table 1

and top panel of Figure 1).
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Figure 1: Daily yield data from May 1, 2018 to October 30, 2020. The top panel
shows the target rate set by the central bank (black dashed line), the 3-month yield to
maturity (green line), and the 10-year yield to maturity (purple line). The middle panel
displays the term spread (10-year yield minus 3-month yield). The bottom panel represents
the 15-day backward standard deviations of 3-month and 10-year yields (green and purple
lines, respectively). The vertical gray dashed lines show our subdivision in periods. All
values are in percentages.
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Table 1: Target rates set by Bank of Canada in the sample period. The rate of May 1, 2018
was fixed previously. Dates in dd/mm/yy format.

Date 01/05/18 10/07/18 24/10/18 04/03/20 16/03/20 27/03/20

Target rate 1.25 % 1.50 % 1.75 % 1.25 % 0.75 % 0.25 %

The first sample split results from the comparison of the 3-month and 10-year yields

(see the top and middle panels in Figure 1). The latter is higher at the beginning of the

sample, as it is in normal times, but becomes lower later. Hence, we set the beginning of

the second period to the first day in which the term spread (the difference between 10-year

and 3-month yields) is zero, i.e. to March 22, 2019. The second period is characterized by

a negative (or close to zero) term spread.

The second period ends before the pandemic outbreak. Although the first rate cut occurs

on March 4, 2020, a pre-announcement effect is observable: the 3-month yield remarkably

falls on February 28, 2020, and the yield curve features a consistent downward shift. Hence,

we choose this date as the cut-off. Our subdivision is supported by functional boxplots

based on the 2-curve band depth (Sun and Genton, 2011; López-Pintado and Romo, 2009).

Indeed, including February 28 to March 3, 2020 (a total of three curves) in the second

period would have produced three outliers in the corresponding functional boxplot. The

selected split excludes the presence of outliers (see Figure A1).

We remove from the analysis the period from February 28 to March 27, 2020, due to

the exceptionally frequent interventions by the Bank of Canada in cutting the target rate

and starting its support to the economy. This phase features a high demand for liquidity

in the markets, pervasive uncertainty and financial stress. The yield curves in this removed

transition period do not feature a common pattern and largely vary from one day to the other

(see Figure A1). Moreover, yield volatility is exceptionally high in this period, especially in

the short term (see the bottom panel of Figure 1).

From March 28, 2020, no other cuts of target rates take place, the term spread is stable

and volatility is under control. This is our third period of analysis, the one related to the

pandemic.

As a result, the sub-samples under scrutiny are the following.

• First period: from May 1, 2018 to March 21, 2019; 233 observations. The term spread

is positive (normal time); the Bank of Canada increases the target rate twice; some

tensions are linked to the trade war between China and the United States, but global

economic growth keeps solid (in particular in the United States).
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• Second period: from March 22, 2019 to February 27, 2020; 245 observations. The

term spread is negative, on average (anomalous time); the Bank of Canada does not

intervene on the target rate; somber economic perspectives anticipated by market

actors; slowdown of global economic growth, in particular in China and the Euro area

(because of Brexit concerns); trade conflicts between China and the United States are

still present.

• Third period (COVID-19): from March 28, 2020 to October 30, 2020; 124 obser-

vations. The term spread is positive (return to normal time); the Bank of Canada

does not intervene on the rates anymore, but renovates its economic support; sharp

contraction of the world economy due to COVID-19 first wave (massive reduction of

economic activity to limit the virus spread).

More detailed macroeconomic issues are described in the quarterly Monetary Policy

Reports by the Bank of Canada, from April 2018 to October 2020.

3.2 Mean and volatility term structure

For each day, we consider the term structure of interest rates, i.e., the curve of bond

yields to maturity at different horizons. We then estimate, for each of the three periods

considered, the mean yield curve and the relative volatility (coefficient of variation, i.e.,

standard deviation divided by the mean) curve. Figure 2 shows these curves after smoothing

according to the preliminary steps of the FPCA algorithm described in Subsection 4.1. For

the sake of completeness, we plot in the same figure the raw curves: pointwise mean and

relative volatility. Note that we consider relative volatility in place of volatility because

yields variability is naturally lower when yields are low (as in the third period). This

problem is overcome by the relative volatility.

We observe a neat decline of mean yields (at all horizons) from the first period to the

second, and to the third. The decline from the second to the third period follows closely

the Bank of Canada target rate cuts in March 2020. Interestingly, the first and the third

periods show increasing yield curves, with the first period curve attaining a plateau after

few maturities. On the contrary, the average yield curve for the second period features an

inverted hump, with medium-term yields lower than short- and long-term ones.

As far as relative volatility is concerned, the third period shows an excess short-term

volatility caused by the COVID-19 outbreak. The hump of relative volatility gives an idea of

the horizon (roughly 10 years) after which the pandemic consequences on government bonds

are expected to completely fade out (the peak is, however, roughly at 3-year maturity). In

addition, the relative volatility at long maturities of the COVID-19 period is very similar
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to the one of the second period, suggesting the presence of long-run risks with similar

magnitude. The central bank interventions do not seem to have affected such sources of

uncertainty. Interestingly, the long-run relative volatility is smaller in the first period, where

market tensions concentrate in the short and medium run.

To summarize, from mean and relative volatility curves in the three sub-samples, we

can infer the following.

• First period: increasing mean yield curve with high yields; the curve reaches the

plateau quickly; low long-run relative volatility.

• Second period: mean yield curve with inverted hump: medium-term yields lower than

short- and long-term yields; average yields generally lower than the ones in the first

period; sustained long-run relative volatility.

• Third period (COVID-19): increasing mean yield curve with low yields; the curve

reaches the plateau later than the first period curve; explosion of short-term relative

volatility; sustained long-run relative volatility as in the second period.

4 Functional Principal Component Analysis of yield curves

4.1 Methodology

We employ Functional Principal Component Analysis (FPCA, see e.g. Ramsay and Silver-

man, 2005, Chapters 8 and 9) to study the modes of variation of the yield curves in each

of the three sub-samples. For each period we consider the yield curves y1(x), . . . , yN (x)

observed at horizons x = 3, 6, . . . , 360, as N realizations of the square-integrable stochas-

tic process Y (x), x ∈ X = [3; 360], with mean µ(x) = E(Y (x)) and covariance function

v(x, z) = Cov(Y (x)Y (z)). We then project the random curve Y (x) into the low dimen-

sional space defined by the first K smooth eigenfunctions φ1(x), . . . , φK(x) of the covariance

operator V : L2(X ) → L2(X ), V (f) =
∫
X v(x, z)f(x)dx, corresponding to the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λK :

Y (x) ≈ µ(x) +

K∑
k=1

ξkφk(x),

where ξk =
∫
X [Y (x)−µ(x)]φk(x)dx are the principal component scores. To perform FPCA

and estimate the mean, covariance function, eigenfunctions, eigenvalues, and principal com-

ponent scores, we follow the PCA through Conditional Expectation (PACE) approach of

Yao, Müller, and Wang (2005) and Liu and Müller (2009), as implemented in the function

FPCA of the R package fdapace (Carroll et al., 2020). In order to incorporate smoothing in
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the FPCA, we employ local linear smoothing for estimating the mean µ(x) and the covari-

ance function v(x, z) by setting the argument methodMuCovEst to "smooth". Briefly, the

employed PACE approach involves the following steps:

• Compute the estimated mean function µ̂(x) using local linear smoothing, aggregating

the N curves y1(x), . . . , yN (x);

• Compute the estimated covariance function v̂(x, z) by smoothing the sample raw

covariance;

• Obtain the estimated eigenfunctions φ̂k and eigenvalues λ̂k by performing eigenanal-

ysis on the smoothed covariance function;

• Estimate the principal component scores using numerical integration, i.e. compute

ξ̂i,k =
∫ 360
3 [yi(x)− µ̂(x)]φ̂i(x)dx.

In each period, we select K = 3, obtaining the approximation yi(x) ≈ µ̂(x)+
∑3

k=1 ξ̂i,kφ̂k(x)

for each yield curve. This choice leads to a variability explained greater than 99% in all three

periods, and matches the choice of three factors (the so-called level, slope and curvature) in

PCA on the yield curve usually made in the literature (Litterman and Scheinkman, 1991).

FPCA results in the three periods are displayed in Figures 3-5, which include barplots

of the variance explained by the first three components, the corresponding eigenfunctions,

and the shocked yield curves when the shock affects a single component (i.e. the plot of the

components as perturbations of the mean).

4.2 Results interpretation

In line with Litterman and Scheinkman (1991), the first three principal components can be

interpreted as level, slope and curvature, and explain most of the variations in the yield

curves: the variance explained is more than 99% in each period. In particular, the level

alone explains always more than 93% of total variance, while the slope has more weight in

the second period than in the other two periods.

For each of the three periods, the level (first component) is rather stable across horizons

(top-right and bottom-left panels of Figures 3-5). However, the first period features a

slightly stronger level in the medium term, a behavior similar to the relative volatility in

the same period. In the other periods, the level is higher in the long term than in the short

term and a shock to the level induces a vertical shift in the yield curve which is larger in

the long term. In fact, the COVID-19 crisis did not meaningfully modify the main mode

of variation (the level). Long-run risks are still present and their magnitude is unchanged,
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explained by the first three components (interpreted as level, slope and curvature). The top-
right panel displays the eigenfunctions of such components. The bottom panels represent the
(smoothed) mean term structures of yields in the first period, together with the negatively
or positively shocked curves obtained by subtracting or adding twice the standard deviation
of the component times the component curve. All values are in percentage.
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Figure 4: FPCA results for the second period. The top-left barplot shows the
variance explained by the first three components (interpreted as level, slope and curvature).
The top-right panel displays the eigenfunctions of such components. The bottom panels
represent the (smoothed) mean term structures of yields in the second period, together
with the negatively or positively shocked curves obtained by subtracting or adding twice
the standard deviation of the component times the component curve. All values are in
percentage.
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Figure 5: FPCA results for the third period. The top-left barplot shows the variance
explained by the first three components (interpreted as level, slope and curvature). The top-
right panel displays the eigenfunctions of such components. The bottom panels represent the
(smoothed) mean term structures of yields in the third period, together with the negatively
or positively shocked curves obtained by subtracting or adding twice the standard deviation
of the component times the component curve. All values are in percentage.
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even though all yields to maturity are lower in the third period: interest rates continue

being persistent.

The first period features a slope (second component) remarkably different from the other

periods (top-right and bottom-center panels of Figures 3-5). In particular, in the first period

the slope is high (in absolute terms) on maturities less than 5 years, smaller (and of opposite

sign) between 5 and 17 years roughly, and becomes zero later. Such behavior is in line with

the pattern of relative variance and the rapid flattening of the mean curve, and it reconfirms

the importance of short- and medium-term risks in the first period. A positive shock in the

slope can make short-term yield higher than medium-term ones without affecting long-term

rates. On the contrary, the slope in the other periods is non-null in the long run (after

the 15-year horizon roughly). Interestingly, the slope long-run dependence is qualitatively

unchanged during the pandemic. The differences regard the variance explained (6% and

3.22% in the second and third periods, respectively) and the shape of the shocked yield

curves. Indeed, in the second period, a positive shock in the slope can make the yield curve

flat or even downward sloping (see the bottom-center plot in Figure 4). In the third period,

a modest shock in the slope does not affect the increasing monotony of the yield curve.

In the first two periods, the eigenfunctions of third principal component (curvature)

have the same signs in the short- and in the long-term. The behavior of the curvature is

more complex in the third period. The interpretation is hard in this case. However, the

variance explained by the curvature is tiny in all periods (roughly 2% at most).

5 Nelson and Siegel (1987) approach

Nelson and Siegel (1987) model provides an alternative perspective on level, slope and

curvature effects. This model allows us to shed some light on the role of the curvature,

which does not explain much variability in FPCA, making the interpretation difficult.

5.1 Methodology

Nelson and Siegel (1987) provide a parsimonious exponential approximation of the yield

curve, based on three factors. As illustrated by Diebold and Li (2006), for each day t the

yield curve can be estimated via the functional form

yt(x) = β1,t + β2,t

(
1− e−λtx

λtx

)
+ β3,t

(
1− e−λtx

λtx
− e−λtx

)
,

where yt(x) is the yield to maturity with term x months and λt is a positive parameter

that governs the exponential decay. Here, β1,t, β2,t and β3,t are three latent dynamic factors

with long-term, short-term and medium-term effects. As discussed in Diebold and Li (2006),
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β1,t, β2,t and β3,t can be interpreted as level, slope and curvature factors. Specifically, β1,t

coincides with the long-term yield, β2,t is closely related with the term spread and β3,t is

associated with twice the two-year yield minus the sum of the ten-year and three-month

yields.

The decay parameter λt is chosen as to maximize the medium-term regressor when
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Figure 6: Nelson and Siegel (1987) factors. Time series of estimated β̂1,t, β̂2,t and β̂3,t
and their 95% confidence intervals in the Nelson and Siegel (1987) model (with λt = 0.0609).
The vertical gray dashed lines show our subdivision in periods. All values are in percentage.
Red points correspond to non-significant coefficients (p-value of t-test for βj,t = 0 larger
than 0.05, for j = 1, 2, 3). See also Figure A5.
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x = 30 months. This approach leads to λt = 0.0609 (see Diebold and Li, 2006). The betas

are then estimated via ordinary least squares for each day t. Figure 6 shows the obtained

time series of daily beta estimates. Descriptive statistics for the betas in each of the three

periods are collected in Table 2. See also Figure A5 for the corresponding t-test p-values.

Table 2: Descriptive statistics – mean, volatility (standard deviation) and relative volatility
(coefficient of variation) – of Nelson and Siegel (1987) model in each of the three periods.

Mean (%) Volatility (%) Relative volatility

Period 1

β̂1,t 2.3542 0.1224 0.0520

β̂2,t -0.7065 0.3532 0.4999

β̂3,t -0.1449 0.8546 5.8982

Period 2

β̂1,t 1.7471 0.2151 0.1231

β̂2,t 0.2435 0.1831 0.7521

β̂3,t -1.4169 0.6153 0.4342

Period 3

β̂1,t 1.2750 0.1339 0.1050

β̂2,t -0.5466 0.0992 0.1814

β̂3,t -3.0557 0.3131 0.1025

5.2 Results interpretation

The β1,t estimates decrease, on average, from the first to the second period, as well as from

the second to the third one (Figure 6 and Table 2). Such decrease reflects the declines of

mean long-term yields along the three periods we observed in the top panel of Figure 2.

The Bank of Canada cuts of its target rate in March 2020 triggered the decrease of β1,t from

the second to the third period. In addition, the relative volatility of β̂1,t is remarkably high

in the second and third periods. This behavior mirrors the one of the relative volatility at

far maturities (Figure 2) and reflects the long-run dependence of the level detected by the

FPCA. Interestingly, this behavior is not captured by the volatility itself.

The signs of the β̂2,t reflect the yield curve inversion of the second period. Indeed, β̂2,t is

almost always positive in the second period, while it is negative in the other periods (Figure

6 and Table 2). The COVID-19 period features an increasing yield curve, similarly to the
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first period. The central bank interventions contributed to correct the curve inversion of the

second period. In addition, the relative volatility of β̂2,t is higher in the second period, mir-

roring the higher variance explained by the second functional principal component (slope)

in the second period, with respect to the other periods.

The behavior of β̂3,t permits to better understand the curvature in the three periods. As

shown in Diebold and Li (2006), this factor is closely related with twice the two-year yield

minus the sum of the ten-year and three-month yields. β̂3,t decrease over the three period,

on average, capturing a more and more valuable curvature effect. Indeed, in the second

period, the curvature is due to the inverted hump in the mean yield curve. In the third

period, although the yield curve is increasing, the mean β̂3,t is low because of relatively high

long-term rates with respect to the two-year yield.

6 Conclusions and further discussion

Our methodology relies on the application of FPCA to the term structure of yields to

maturity and it is complemented by the (exponential) regression model of Nelson and Siegel

(1987). A simple but key step of the analysis is the split of the sample period, which permits

to detect and quantify the different behaviors of the yield curves. Future works involve the

development of a time-dependent FPCA, which would permit us to follow the evolution of

the components in a continuous way along the time, overcoming the issue of splitting the

sample in separate periods. For comparison, the outcomes of (classic) PCA are displayed in

Figures A2-A4. Results are qualitatively similar to FPCA, but they are less smooth, hence

harder to interpret. These differences between FPCA and PCA would be more striking

with more noisy and/or more sparsely sampled yield curves, and highlight the advantages

of working in a functional framework.

Regarding the Nelson and Siegel (1987) approach, the presence of unit roots in the

sequences of β1,t, β2,t and β3,t could be inspected. However, we do not judge such analysis

insightful for understanding the changes in the yield curve during the pandemic.

In summary, we can draw the following conclusions on the consequences of the Bank of

Canada interventions on the term structure of Canadian government bond yields.

- During the COVID-19 pandemic, the average term structure of rates is increasing, as

it was before March 21, 2019: Bank of Canada interventions contribute to cancel the

curve inversion observable between March 22, 2019 and March 3, 2020. In addition,

yields at all maturities in the COVID-19 period are lower than in previous periods.

The target rate cut by the central bank induced a decrease of rates also at long

maturities.
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- During the COVID-19 crisis, relative volatility is extremely high for bond yields with

close maturities. This reflects a high level of uncertainty about the near future. More-

over, the long-run relative variance is not different from the one of the twelve months

before. Despite Bank of Canada stimuli, the same amount of long-run risk is present.

- The level (in FPCA) has the same long-run dependence during the pandemic and in

the twelve months before. This provides evidence of the maintained persistence of

yields to maturity despite their overall decrease.

- During the pandemic, the slope (in FPCA) keeps the same long-run dependence of

the twelve months before. However, it explain less variance and a modest shock in the

slope is not able to modify the monotony of the yield curve. Indeed, the increasing

monotony of the yield curve induced by the target rate cuts is rather insensitive to

shocks in the slope component.

- In the COVID-19 period, a curvature effect (from Nelson and Siegel, 1987, model) is

present even though the yield curve does not display any hump. This is caused by

relatively high long-term yields with respect to medium-term yields.

In a nutshell, the FPCA of pandemic is similar to the one of the twelve months before,

while the mean yield curve is likely to be a downward shift of the mean curve dating back to

the period before March 21, 2019. By modifying the target rate, the Bank of Canada was

effective in lowering all yields to maturity and correcting the inverted hump in the curve,

but it was not able to affect the (remarkable) long-run risks.
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A. Falato, I. Goldstein, and A. Hortaçsu. Financial fragility in the COVID-19 crisis: The

case of investment funds in corporate bond markets. NBER Working Paper, (w27559),

2020.

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3762628

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://CRAN.R-project.org/package=fdapace


E. Falkenstein and J. Hanweck. Minimizing basis risk from non-parallel shifts in the yield

curve Part II: Principal Components. Journal of Fixed Income, 7:85–90, 1997.

B.W. Golub and L.M. Tilman. Measuring yield curve risk using principal components

analysis, value at risk, and key rate durations. The Journal of Portfolio Management, 23

(4):72, 1997.

V. Haddad, A. Moreira, and T. Muir. When selling becomes viral: Disruptions in debt

markets in the COVID-19 crisis and the Fed’s response. The Review of Financial Studies,

2021.

Z. He, S. Nagel, and Z. Song. Treasury inconvenience yields during the COVID-19 crisis.

Journal of Financial Economics, 2021.

F. Jamshidian and Y. Zhu. Scenario simulation: Theory and methodology. Finance and

Stochastics, 1(1):43–67, 1996.

M. Kargar, B.R. Lester, D. Lindsay, S. Liu, P.-O. Weill, and D. Zúñiga. Corporate bond
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A1 Appendix

Figure A1 shows the functional boxplots of the yield curves on the different time periods
described in Subsection 3.1.

Figures A2-A4 contain the outcomes of the classic PCA (for comparison, FPCA results
can be found in Figures 3-5 in the main text).

Figure A5 contains the p-values of the t-test for βj,t = 0 in Nelson and Siegel (1987)
model, for j = 1, 2, 3. Such coefficients are almost always significant (p-value < 0.05). The
graphs complement the results of Figure 6 and Table 2.
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Figure A1: Functional boxplots of the yield curves. Daily yield curves (left panels)
and corresponding functional boxplots (right panels) in the three periods considered in the
analysis, as well as in the removed transition period (February 28 to March 26, 2020). The
black lines in the left panels represent the mean yield curve in each period.
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Figure A2: (Classic) PCA results for the first period. The top-left barplot shows the
variance explained by the first three components (interpreted as level, slope and curvature).
The top-right panel displays the eigenvectors of such components. The bottom panels
represent the raw mean term structures of yields in the first period, together with the
negatively or positively shocked curves obtained by subtracting or adding twice the standard
deviation of the component times the component curve. All values are in percentage.
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Figure A3: (Classic) PCA results for the second period. The top-left barplot
shows the variance explained by the first three components (interpreted as level, slope and
curvature). The top-right panel displays the eigenvectors of such components. The bottom
panels represent the raw mean term structures of yields in the second period, together
with the negatively or positively shocked curves obtained by subtracting or adding twice
the standard deviation of the component times the component curve. All values are in
percentage.
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Figure A4: (Classic) PCA results for the third period. The top-left barplot shows the
variance explained by the first three components (interpreted as level, slope and curvature).
The top-right panel displays the eigenvectors of such components. The bottom panels
represent the raw mean term structures of yields in the third period, together with the
negatively or positively shocked curves obtained by subtracting or adding twice the standard
deviation of the component times the component curve. All values are in percentage.

26

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3762628

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



0
50

10
0

15
0

20
0

t−test for β1=0

−
lo

g 1
0(

p−
va

lu
e)

0
20

40
60

80

t−test for β2=0

−
lo

g 1
0(

p−
va

lu
e)

0
10

20
30

40

t−test for β3=0

−
lo

g 1
0(

p−
va

lu
e)

20
18

−0
5−

01

20
18

−0
8−

06

20
18

−1
1−

12

20
19

−0
2−

18

20
19

−0
5−

27

20
19

−0
9−

02

20
19

−1
2−

09

20
20

−0
3−

16

20
20

−0
6−

22

20
20

−0
9−

28

Figure A5: P-values in Nelson and Siegel (1987) model. P-values of t-tests for
βj,t = 0, j = 1, 2, 3 in Nelson and Siegel (1987) model. Red points correspond to non-
significant coefficients (p-value > 0.05). The vertical gray dashed lines show our subdivision
in periods.
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